LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

## M.Sc. DEGREE EXAMINATION - STATISTICS

## SECOND SEMESTER - APRIL 2014

## ST 2814/2811-ESTIMATION THEORY

Date : 28/03/2014 $\square$ Max. : 100 Marks
Time : 09:00-12:00
Part - A

Answer ALL the following:

1) Define UMVUE for estimating a parameter $\theta$.
2) Suggest an unbiased estimator of $\theta$, when a random sample $X_{1}, X_{2}, \ldots, X_{n}$ is drawn from $U(0, \theta)$.
3) Obtain the sufficient statistic when a random sample $X_{1}, X_{2}, \ldots, X_{n}$ is drawn from $\mathrm{P}(\mathrm{x}, \theta)=\theta \mathrm{x}^{\theta-1}, 0<\mathrm{X}<1$, zero elsewhere.
4) Find which one of the following is ancillary when a random sample $X_{1}, X_{2}$ is drawn from $N(\mu, 1)$
(a) $\mathrm{X}_{1} / \mathrm{X}_{2}$
(b) $\mathrm{X}_{1}+\mathrm{X}_{2}$
(c) $\mathrm{X}_{1}-\mathrm{X} 2$
(d) $2 \mathrm{X}_{1}-\mathrm{X}_{2}$
5) Define bounded completeness.
6) Define a minimal sufficient statistic.
7) State the sufficient condition for an estimator to be consistent.
8) Define mean square error. What is the mean square error of $\bar{X}$ when the random sample is drawn from $N\left(\mu, \sigma^{2}\right)$ ?
9) State any two Rao - Cramer regularity conditions.
10) Suggest an MLE for $P[X=0]$ in the case of Poisson ( $\theta$ ).

PART - B

Answer any FIVE questions:
11) Let $\delta_{0}$ be a fixed member of $U_{g}$. prove that $U_{g}=\left\{\delta_{0}+\mathrm{u} \mid \mathrm{u} \epsilon \mathrm{U}_{0}\right\}$.
12) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $E(\mu, \sigma)$. Obtain the MLE of $\mu$ and $\sigma$.
13) Let $X \sim N(\theta, 1)$. Obtain the Cramer-Rao lower bound for estimating $\theta^{2}$. Compare the variance of the UMVUE with the Cramer-Rao lower bound.
14) State and prove the invariance property of the CAN estimator.
15) Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid Poisson ( $\lambda$ ) where $\lambda \sim E(0,1)$. Find the Baye's estimator of $\lambda$.
16) Obtain the minimal sufficient statistic in the case of $b(1, \theta)$ based on a random sample.
17) Let X be a discrete r.v with $\mathrm{p}(\mathrm{x}, \theta)=\left\{\begin{array}{cc}\theta & x=-1 \\ (1-\theta)^{2} \theta^{x} & x=0,1,2, \ldots\end{array}\right.$

Find all the unbiased estimators of 0 .
18) Let $X_{1}, X_{2}$ be a random sample from $E(0, \sigma)$. Show that $\left(X_{1}+X_{2}\right)$ and $X_{1} \mid\left(X_{1}+X_{2}\right)$ are independent using Basu's theorem.

Answer any TWO of the following:
19) (a) State and prove Rao-Blackwell theorem. Hence obtain Lehman-Scheffe theorem.
(b) Show that the UMVUE is unique.
(c) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from Poisson ( $\theta$ ). Obtain the a UMVUE of $e^{-\theta}$.
20) (a) State and prove Cramer-Rao inequality for multiparameter case.
(b) Obtain the Cramer-Rao lower bound for i) $\mu$ and ii) $\sigma^{2}$ when the random sample is from $N\left(\mu, \sigma^{2}\right)$.
21) (a) State and prove the small sample properties of the MLE.
(b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be iid $\mathrm{E}(\theta, 1)$. Show that the MLE of $\theta$ is not CAN but consistent. Suggest a CAN estimator for $\theta$.
22) (a) Explain Jacknife estimator with an example.
(b) Explain EM algorithm in detail.

