LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
M.Sc. DEGREE EXAMINATION – STATISTICS	
SECOND SEMESTER – APRIL 2014	
ST 2814/2811 - ESTIMATION THEORY	
CUCEAT LUX VISTRA	
Date : 28/03/2014 Dept. No. Time : 09:00-12:00 No.	Max. : 100 Marks
Part – A	
Answer ALL the following:	(10 X 2 = 20)
1) Define UMVUE for estimating a parameter θ .	
 Suggest an unbiased estimator of θ, when a random sample X₁, X₂,, X_n is drawn from U(0, θ). Obtain the sufficient statistic when a random sample X₁, X₂,, X_n is drawn from 	
$P(x,\theta) = \theta x^{\theta-1}, 0 < X < 1$, zero elsewhere.	
4) Find which one of the following is ancillary when a random sample X_1 , X_2 is drawn from N(μ ,1)	
(a) X_1/X_2 (b) X_1+X_2 (c) $X_1 - X_2$ (d) $2X_1-X_2$	
5) Define bounded completeness.	
6) Define a minimal sufficient statistic.	
7) State the sufficient condition for an estimator to be consistent.	
8) Define mean square error. What is the mean square error of \bar{X} when the random sample is drawn from N(μ , σ^2)?	
9) State any two Rao – Cramer regularity conditions.	
10) Suggest an MLE for $P[X=0]$ in the case of Poisson (θ).	
PART – B	
Answer any FIVE questions:	(5x8 = 40)
11) Let δ_0 be a fixed member of U_g . prove that $U_g = \{ \delta_0 + u \mid u \in U_0 \}$. 12) Let $Y = Y$ be a random complete from $F(u, \sigma)$. Obtain the MLE of u and σ	
12) Let $X_1, X_2,, X_n$ be a random sample from $E(\mu, \sigma)$. Obtain the MLE of μ and σ . 13) Let $X \sim N(\theta, 1)$. Obtain the Cramer-Rao lower bound for estimating θ^2 . Compare the variance of	
the UMVUE with the Cramer-Rao lower bound.	
14) State and prove the invariance property of the CAN estimator.	
15) Let $X_1, X_2,, X_n$ be iid Poisson (λ) where $\lambda \sim E(0,1)$. Find the Baye's estimator of λ .	
16) Obtain the minimal sufficient statistic in the case of $b(1,\theta)$ based on a random sample.	
17) Let X be a discrete r.v with $p(x,\theta) = \begin{cases} \theta & x = -1\\ (1-\theta)^2 \theta^x & x = 0, 1, 2, \dots \end{cases}$	
Find all the unbiased estimators of 0.	

18) Let X_1 , X_2 be a random sample from $E(0,\sigma)$. Show that $(X_1 + X_2)$ and $X_1 \mid (X_1 + X_2)$ are independent using Basu's theorem.

PART – C

Answer any TWO of the following:

- 19) (a) State and prove Rao-Blackwell theorem. Hence obtain Lehman-Scheffe theorem.
 - (b) Show that the UMVUE is unique.
 - (c) Let $X_1, X_2, ..., X_n$ be a random sample from Poisson (θ). Obtain the a UMVUE of $e^{-\theta}$.
- 20) (a) State and prove Cramer-Rao inequality for multiparameter case.
 (b) Obtain the Cramer-Rao lower bound for i) μ and ii) σ² when the random sample is from N(μ,σ²).
- 21) (a) State and prove the small sample properties of the MLE.
 - (b) Let $X_1, X_2, ..., X_n$ be iid $E(\theta, 1)$. Show that the MLE of θ is not CAN but consistent. Suggest a CAN estimator for θ .
- 22) (a) Explain Jacknife estimator with an example.
 - (b) Explain EM algorithm in detail.
